Discussion 5 Worksheet Vector-valued functions and partial derivatives

Date: 9/10/2021

MATH 53 Multivariable Calculus

1 Integrals of Vector Functions

1. Evaluate $\int_{1}^{2}\left\langle\frac{\ln (t)}{t}, e^{-t}\right\rangle d t$.
2. Suppose that $\overrightarrow{r^{\prime \prime}}(t)=\langle 6 t, \sin (t)\rangle$ and it is known that $\overrightarrow{r^{\prime}}(0)=\langle 1,-1\rangle$ and $\vec{r}(0)=\langle 0,1\rangle$. Find a formula for $\vec{r}(t)$.

2 Vector Function Basics

(a) Find the limit

$$
\lim _{t \rightarrow 0}\left\langle e^{-3 t}, \frac{t^{2}}{\sin ^{2} t}, \cos 2 t\right\rangle .
$$

(b) Find the limit

$$
\lim _{t \rightarrow \infty}\left\langle\frac{1+t^{2}}{1-t^{2}}, \arctan t, \frac{1-e^{-2 t}}{t}\right\rangle .
$$

(c) Find a vector equation and parametric equations for the line segment that joins $(2,0,0)$ to $(6,2,-2)$.
(d) Find a vector equation and parametric equations for the line segment that joins $(1,5,6)$ to $(3,1,8)$.
(e) Find a vector function that represents the curve of the intersection of the cone $z=\sqrt{x^{2}+y^{2}}$ and $z=1+y$.
(f) Suppose the trajectories of two particles are given by

$$
r_{1}(t)=\left\langle t^{2}, 7 t-12, t^{2}\right\rangle \quad r_{2}(t)=\left\langle 4 t-3, t^{2}, 5 t-6\right\rangle
$$

for $t \geq 0$. Do the particles collide?

3 Challenge: Vector Orthogonality

(a) Show that if $|\mathbf{r}(t)|=c$ (a constant), then $\mathbf{r}^{\prime}(t)$ is orthogonal to $\mathbf{r}(t)$ for all t.

4 Graphs of Multivariable Functions

Sketch the graph of the function.
(a) $f(x, y)=y$;
(b) $f(x, y)=10-4 x-5 y$;
(c) $f(x, y)=\sin x$;
(d) $f(x, y)=\sqrt{4-4 x^{2}-y^{2}}$.

5 Evaluating Partial Derivatives

1. Compute the following partial derivatives:

$$
\begin{aligned}
& \frac{\partial}{\partial x}\left(x^{2} e^{x y}\right) \\
& \frac{\partial^{10}}{\partial x^{10}}\left(\frac{\partial^{13}}{\partial y^{13}}\left(x^{10} y^{13}\right)\right) . \\
& \frac{\partial}{\partial w}(\sin (w \sin (w v))) . \\
& \frac{\partial}{\partial x}\left(\frac{\partial}{\partial y}\left(\frac{e^{x y \sin (y)-x}}{y \sin (y)-1}\right)\right) \text {.Hint: Clairaut's Theorem simplifies the calculation. }
\end{aligned}
$$

2. In the equation $P V=T$, any one of the three variables can be solved for as a function of the other two. Show that $\left(\frac{\partial P}{\partial T}\right)\left(\frac{\partial T}{\partial V}\right)\left(\frac{\partial V}{\partial P}\right)=-1$.

6 More on Partial Derivatives

1. Suppose that the values of a function $f(x, y)$ at four points are given by the following table:

	$\mathrm{x}=1.3$	$\mathrm{x}=1.4$
$\mathrm{y}=0.4$	2.3	2.5
$\mathrm{y}=0.6$	1.5	1.4

Estimate $f_{x}(1.3,0.4)$ and $f_{x}(1.3,0.6)$. Then estimate $f_{x y}(1.3,0.4)$.
2. Consider a smooth function $f(x, y)$ of two variables. List all possible third order partial derivatives of f. Your list should not contain two equivalent expressions. Here "smooth" means that all relevant derivatives of f exist and are continuous.
3. Suppose that the partial derivatives of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ exist. If f_{x} is the zero function, show that f is a function of y only. More precisely, there exists a function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x, y)=g(y)$ for all real numbers x and y.
Hint: For fixed y, consider the function $h(t)=f(t, y)$ and differentiate.

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.

